Форумы-->Форум для внеигровых тем-->
Автор | Помогите с геометрией! |
Требуется решить и доходчиво объяснить мне как решается следующая задачка:
Какой угол образуют единичные векторы s и t, если известно, что векторы p=s+2t и q=5s-4t взаимно перпендикулярны? (за объяснение правильного решения плачу 7000). | т.к. p=s+2t и q=5s-4t взаимно перпендикулярны, то ps=0, т.е.
(s+2t)(5s-4t)=0;
5ss-4ts+10ts-8tt=0;
6ts=8tt-5ss
т.к. s и t единичные, то ss=tt=1;
получим:
6ts=3;
ts=1/2;
т.к ts=cos(t,s), то угол между ними arccos(1/2)=60 градусов. | коментарий: сдесь ps,ts - скалярное произведение; ss,tt - скалярный квадрат | спасибо, кажись понял | тема закрыта by Аэнаин (2009-09-09 17:02:00) |
---|
К списку тем
|